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Abstract

The stress state of a magnetoelastic half-plane with a crack is considered. It is assumed that the half-plane is
located in a magnetic ®eld, which is parallel to the boundary of the half-plane. Four various boundary conditions
for the half-plane are considered. A numerical method is developed to determine the crack-opening displacements
and the magnetoelastic stress intensity factor. The e�ect of the magnetic ®eld and the boundary conditions on the

magnetoelastic stress intensity factor are shown graphically and numerically. The case of an edge crack is considered
as a particular case. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

During last few years a great number of papers are devoted to the behavior of the deformable bodies
in electromagnetic ®elds (Moon, 1968; Parton and Kudriavcev, 1988). Particularly the investigation of
the stress state of magnetoelastic bodies with di�erent types of defects (cracks, etc.) in magnetic ®elds
becomes of great value (Parton and Kudriavcev, 1988; Shindo, 1977). Shindo (1977, 1982, 1983) was the
®rst to consider the problems of determination of the stress±strain state of a ferromagnetic body with
cracks in a magnetic ®eld. He has proved, that quite weak magnetic ®elds (01 T) can essentially change
the stress±strain state of the body in the vicinity of the crack. Later on the in¯uence of various factors
(heterogeneity, nonstationarity of the process, account of the bound areas of the body etc.) on stress±
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strain state of a magnetoelastic body with a crack, has been considered (Hasanian et al., 1988; Hasanian
and Bagdasaryan, 1997; Shindo, 1982, 1983). All mentioned problems are solved on the basis of
linearized theory of magnetoelasticity of ferromagnetic bodies suggested by Pao and Yeh (1973).

In the present work the in¯uence of boundary conditions on the stress±strain state of a half-plane
with a crack is investigated. A case is considered when the crack is perpendicular to the boundary of the
half-plane. The body is located in a homogeneous magnetic ®eld, which is parallel to the boundary of
the half-plane (Fig. 1). A singular integral equation is obtained with respect to the unknown function
characterizing the problem. The problem is solved for the following boundary conditions:

. The boundary of the half-plane is fastened;

. The boundary of the half-plane is free of stresses;

. Mixed boundary conditions for the half-plane are given.

There are many papers devoted to similar questions in absence of the magnetic ®eld (pure elastic case).
Particularly, Koiter (1965), Nied (1987) and Panasuk et al. (1976) have considered the stress±strain state
of the half-plane with a crack in the case when the boundary of the half-plane is free of stresses. There
are many results obtained for the problem of a half-plane with a fastened boundary (Bereznicki et al.,
1983; Savruk, 1988).

2. Formulation of the problem

Let the isotropic, homogeneous, linear elastic, magnetosoft ferromagnetic half-plane with a crack of
width l � bÿ a be located in a magnetic ®eld B � �0, B0�, where B0 � const: The cartesian coordinate
system is chosen in such a way that the cross-section of the crack is in the plane X1OX2 and includes the
segment (a, b) of the co-ordinate axis OX1 �Oe� fa < x1 < b; x2� 0g). The boundary of the half-plane
coincides with the axis OX2 (see Fig. 1). The domain O1�fÿ1 < x1 < 0; jx2j <1g, that is denoted by
(I ) in Fig. 1, is taken to be vacuum. Let O2 � f0 < x1 <1; jx2j <1g and O � O2=Oe be the
ferromagnetic body. The linearized equations and boundary conditions of magnetoelasticity for the
considered problem according to the theory of Pao and Yeh (1973) are given in the following form: In
the domain O

DUi � 1

1ÿ 2n
ÿ
U1, 1 �U2, 2

�
,i
�2wb

2
c

mr
j,i2 � 0 �i � 1, 2� �1�

Fig. 1. Half-plane with a crack in a magnetic ®eld.
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Dj � 0, h � B0

m0
grad j �2�

in the domain Oe

Dj�e� � 0, h�e� � B0

m0
grad j�e� �3�

in the domain O1

Dj�1� � 0, h�1� � B0

m0
grad j�1� �4�

The boundary conditions on the line x2 � 0 have the following form:

t12�x1, 0� � 0 where 0 < x1 <1, �5�

t22�x1, 0�
m

� w2b2
c

2m2
r

� w2

mr
b2
cj,2 ÿ P0�x1� where a < x1 < b, �6�

j�e�,1 ÿ j,1 � ÿ
w
mr
U2, 1 where a < x1 < b, �7�

j�e�,2 ÿ mrj,2 � 0 where a < x1 < b, �8�

j,1 � 0 where 0 < x1 < a, and b < x1 <1, �9�

U2, 1 � 0 where 0 < x1 < a, and b < x1 <1: �10�
The relation (6) holds under the condition that the crack surface is subjected also to equal and
symmetric mechanical loading, speci®ed by m � P0�x1�: In Eqs. (1)±(10) the following notations are
accepted: b2

c � B 2
0 =m0m; m, n are the elastic constants; D � @ 2

@x 2
1

� @ 2

@x 2
2

; f,i � @ f
@x i

; Ui�x1, x2� �i � 1, 2� are
the displacements of the media; h, h�e� and h�1� are perturbed magnetic ®elds in domains O, Oe, and O1

respectively; j is the magnetic potential; m0 is the universal magnetic constant; w � mr ÿ 1 is the
magnetic susceptibility.

Consider the following four boundary conditions on the line x1 � 0 for jx2j <1
�A� U1�0, x2 � � 0, U2�0, x2 � � 0; j,2 ÿ j�1�,2 � 0; mrj,1 ÿ j�1�,1 � 0 �11a�

�B� t11�0, x2� � 0; t12�0, x2 � � 0; j,2 ÿ j�1�,2 � 0; mrj,1 ÿ j�1�,1 ÿ wU1, 2 � 0 �11b�

�C� U2�0, x2� � 0; t11�0, x2� � 0; j,2 ÿ j�1�,2 � 0; mrj,1 ÿ j�1�,1 ÿ wU1, 2 � 0 �11c�

�D� U1�0, x2 � � 0; t12�0, x2� � 0; j,2 ÿ j�1�,2 � 0; mrj,1 ÿ j�1�,1 � 0 �11d�

In Eqs. (5)±(11d) the following relations are used (Pao and Yeh, 1973)
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tij
m
� sij

m
� wB0iB0j

m0m2
r m
� w

mrm
�
B0ihj � B0jhi

�
;
sij
m
� Ui, j �Uj, i � 2n

1ÿ 2n
dijUk, k

tMij
m
� B0iB0j

mm0mr
ÿ B 2

0k

2mm0mr
dij � B0ihj � B0jhi

m
ÿ B0khk

mmr
dij �12�

Besides the conditions (5)±(11d), the conditions at the in®nity has to be taken into account, according to
which all the unknown functions conditioned by the deformation of the media, tend to zero, for x 2

1 �
x 2
241: Note that, the given equations and boundary conditions are written for the plane deformation

state. By similarity, one can write down the equations and the boundary conditions for the plane stress
state.

The formulation of the problem in this form is symmetric with respect to the axis OX1: Using the
Fourier integral transformation and the symmetry of the problem it can be shown that the solutions,
satisfying Eqs. (1)±(4), have the following form: in the internal domain ��x1, x2� 2 O�

U1�x1, x2� � 2

p

�1
0

�
E�b� � x1F�b�

�
eÿbx 1cos bx2 db� 2

p

�1
0

"
A�a� � �ax2 ÿ 3� 4n�B�a�

a
� �1

ÿ 2n�2wb
2
c

mr
C1�a�

#
eÿax 2sin ax1 da

U2�x1, x2� � 2

p

�1
0

�
A�a� � x2B�a�

�
eÿax 1cos ax2 da� 2

p

�1
0

"
E�b� � �bx1 ÿ 3� 4n�F�b�

b
ÿ �1

ÿ 2n�2wb
2
c

mr
C2�b�

#
eÿbx 2sin bx1 db

j�x1, x2� � 2

p

�1
0

C1�a�eÿax 2cos ax2 da� 2

p

�1
0

C2�b�eÿbx 2 db �13�

in the external domain, i.e. �x1, x2� 2 O1

j�1��x1, x2� � 2

p

�1
0

G�b�ebx 1sin bx2 db �14�

in the domain �x1, x2� 2 Oe

j�e��x1, x2� � 2

p

�1
0

Ae�a�sin ax2 cos ax1 da: �15�

In Eqs. (13)±(15) A�a�, B�a�, C1�a�, C2�a�, E�b�, F�b�, G�b� and Ae�a� are unknown functions, which are
determined from the boundary conditions (5)±(11d).

Let us de®ne two functions in the following way:
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V2�x1� �

8><>:
@U2�x1, 0�

@x1
when x1 2 �a, b�

0 when x1 2 �0, a� [ �b,1�
�16�

V1�x1� �

8><>:
@j�x1, 0�
@x1

when x1 2 �a, b�

0 when x1 2 �0, a� [ �b,1�
�17�

According to the boundary conditions (5), (7), (9) and (10), the following relations are obtained:

aA�a� �
�b
a

V2�t�sin at dt; aC1�a� �
�b
a

V1�t�sin at dt; V1�t� � w
mr
V2�t� �18�

B�a� � e1

�b
a

V2�t�sin at dt; e1 � 1

4�1ÿ n�

"
2� �3ÿ 4n�w2b2

c

m2
r

#
: �19�

From the boundary condition (8) the function Ae�a� can be determined via function V2�t�: However, we
will not need it hereafter. Now we have to determine the unknown functions E�b�; F�b�; C2� Z� and G�b�
through the function V2�t�: Substituting Eqs. (18) and (19) into Eq. (12) and using the boundary
conditions (11a)±(11d), upon some transformations for the unknown functions we get the following
relations:

bE�b� � ZEk

�b
a

V2�t�eÿbt dt� yEkb
�b
a

tV2�t�ÿbt dt; bC2�b� � ZCk

�b
a

V2�t�eÿbt dt� yCk b
�b
a

tV2�t�ÿbt dt;

F�b� � ZFk

�b
a

V2�t�eÿbt dt� yFkb
�b
a

tV2�t�ÿbt dt �20�

where

ZEk �
"
gk ÿ Tkw

mr
ÿ
mr � 1

� � GkMkw
Nkmr

ÿ
mr � 1

� ÿ Gkmk

Nk

#"
1ÿ Tkrk

mr � 1
� GkMkrk

Nk

ÿ
mr � 1

� ÿ Gk

Nk

#ÿ1
;

yEk �
�
tk ÿ Gknk

Nk

�"
1ÿ Tkrk

mr � 1
� GkMkrk

Nk

ÿ
mr � 1

� ÿ Gk

Nk

#ÿ1
ZFk

� 1

Nk

"
mk ÿ Mkw

mr
ÿ
mr � 1

�#� ZEk
Nk

�
Mkrk
mr � 1

ÿ 1

�
;

yFk �
nk
Nk
� yEk

Nk

�
Mkrk
mr � 1

ÿ 1

�

ZCk � ÿ
rkZ

E
k

mr � 1
� w

mr
ÿ
mr � 1

� ; yCk � ÿ
rky

E
k

mr � 1
, �k � A, B, C, D�: �21�
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In the case (A) k � A and

rA � 0; NA � ÿ3� 4n; MA � ÿg1; mA � 1; nA � ÿe1; GA � TA � gA � tA � 0:

In the case (B) k � B and

rB � ÿw; NB � ÿ1� 2n; MB � 2nwb2
c

mr
; mB � w2b2

c

2m2
r

; nB � ÿe1; GB � ÿ2� 2n; TB �
�4nÿ 1�wb2

c

2mr
;

gB � tB � 0:

In the case (C) k � C and

rC � w; NC � ÿ1� 2n; MC � 2nwb2
c

mr
; mC � w2b2

c

2m2
r

; nC � ÿe1; GC � ÿ3� 4n; TC � ÿg1; gC � 1;

tC � ÿe1:

In the case (D) k � D and

rD � 0; ND � ÿ2� 2n; MD � ÿ
�1ÿ 4n�wb2

c

2mr
; mD � nD � GD � TD � gD � tD � 0:

Finally all the unknown functions are expressed through one unknown function V2�t�: Thus, owing to
Eqs. (18) and (19), the boundary conditions (5) and (7)±(11d) are satis®ed. From the boundary
condition (6), one can determine the unknown function V2�t�: Substituting Eqs. (18) and (19) into Eq.
(6), the following equation is obtained

1

p
�
�b
a

V2�t� � R0�x1, t� dt � Pÿ P0�x1�, a < x1 < b, �22�

where

R0�x1, t� � a1
1

tÿ x1
� ak2

1

t� x1
� ak3

x1

�t� x1 �2
� ak4

t

�t� x1�2
� ak5

t � x1

�t� x1�3

a1 � 4

�
ÿ 1� �1ÿ 2n�e1 � w

mr
g01

�
, ak2 � 4

�
a1 � ZEk � ZFk � � ÿ 3� 2n� � ZCk � g02

�
,

ak3 � 4ZFk , a
k
4 � 4

h
yEk � yFk �2nÿ 3� � yCk � g02

i
, ak5 � 8yFk , �k � A, B, C, D�

g01 �
w2b2

c

2mr
� �2nÿ 1�wb2

c

mr
; g02 � g01 ÿ

w2b2
c

mr
, P � w�wÿ 2�b2

c

2m2
r

Taking into account Eq. (16) and the boundary condition (10), one can obtain�b
a

V2�t� dt � U2�0, b� ÿU2�0, a�: �23�
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From the symmetry of the problem with respect to OX1 it follows, that U2�b, 0� � 0: When a 6�0,
satis®ed also U2�a, 0� � 0, and from Eq. (23) we have�b

a

V2�t� dt � U2�0, b� ÿU2�0, a� � 0: �24�

Thus for the determination of V2�t� (in the case a 6�0� the singular integral Eq. (22) is obtained together
with the boundary condition (24). In the same way, one can consider the case when the inner crack
reaches the boundary of the half-plane (case of the edge crack, i.e. when a � 0). In this case also all
formulae (1)±(22) are valid and the kernel R0�x1, t�, besides the ordinary singularities when x1 � t, has a
point singularity, when x1 � t � 0: Note that in cases (A) and (C) from boundary conditions (11a) and
(11c) it follows, that U2�0, 0� � 0, and the condition (24) is obtained for the function V2�t�: In the cases
(B) and (D) the condition (24) does not hold. However, the following condition must be satis®ed
U2�0, 0�6�0 (see Panasuk et al., 1976).

Taking into account Eqs. (18) and (19) one can obtain from Eq. (12)

tsij�x1, x2�
m

� tij�x1, x2�
m

� tMij �x1, x2 �
m

�
ÿ
4mr ÿ 3

�
b2
c

2m2
r

dij � 4

p

�b
a

Rij�x1, x2, t�V2�t� dt

�i, j � 1, 2�
�25�

where for example

R22�x1, x2, t� � 1

2

�
ÿ 1� �1ÿ 2n�e1 � w

mr
g 001

��
t� x1

�t� x1 �2�x 2
2

� tÿ x1

�tÿ x1�2�x 2
2

�
ÿ e1

2

"
2�t� x1�x 2

2�
�t� x1�2�x 2

2

�2
� 2�tÿ x1�x 2

2�
�tÿ x1�2�x 2

2

�2
#
� �ZEk � ZFk �2nÿ 3� � g 002 Z

C
k

� t� x1

�t� x1� 2�x 2
2

� ZFk
x1

�
�t� x1�2ÿx 2

2

��
�t� x1� 2�x 2

2

�2
�
h
yEk � yFk �2nÿ 3� � g 002 y

C
k

i
t
�
�t� x1�2ÿx 2

2

��
�t� x1�2�x 2

2

�2 � yFk
2tx1�t� x1�

�
�t� x1 �2ÿ3x 2

2

��
�t� x1 �2�x 2

2

�3 ,

g 001 �
2�2nÿ 1�wb2

c

mr
ÿ 2mr ÿ 1

mr
b2
c , g

00
2 � g 001 �

2
ÿ
2mr ÿ 1

�
mr

b2
c :

In particular cases, from Eq. (22) one can obtain well-known results. For example, in case (B) when
b2
c � 0 (pure elastic case), the integral Eq. (22) takes the form�b

a

"
1

tÿ x1
� 1

t� x1
� 2t

�t� x1�2
ÿ 4t2

�t� x1�3
#
V2�t� dt � pP0�x1�,

which coincides with the integral equations, obtained by Panasuk et al. (1976) and Nied (1987). In the
case (A) when b2

c � 0, the integral equation takes the form of that, obtained by Bereznicki et al. (1983).

3. Construction of the solution to the integral equation

First, the case of an inner crack is considered (i.e. a 6�0). Let us write the integral Eq. (22) in the from
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�1
ÿ1

V2�s�
�

a1
sÿ r

� L�r, s�
�

ds � p�Pÿ P0�r��, jrj < 1 �26�

where the following notations are introduced

x1 � bÿ a

2
�r� d�, t � bÿ a

2
�s� d�, d � b� a

bÿ a
, V2�s� � V2�t�, L�r, s�

� ak2
s� r� 2d

� ak3�r� d�
�s� r� 2d�2

� ak4�s� d�
�s� r� 2d�2

� ak5�r� d��s� d�
�s� r� 2d�3

The condition (24) is written in the form�1
ÿ1

V2�t� dt � 0 �27�

In the cases of a 6�0 the integral Eq. (26) must be considered together with the condition (27).
In the case of an edge crack (i.e. a � 0 or d � 1), for determination of the unknown function V2�s�,

also the integral Eq. (26) is obtained. When a � 0, in the case (A) and (C) the integral Eq. (26) is
considered together with the condition (27).

Note that on the basis of Eqs. (26) and (27), the solution of the problem for an in®nite plane with a
crack can be obtained (see Shindo, 1977). In fact, consideringd41 one gets from Eq. (26)

1

p

�1
ÿ1

V2�s�
sÿ r

ds � Pÿ P0�r�
a1

, jrj < 1:

The solution of this equation tending to 1 whenr421 takes the form

V2�s� � Pÿ P0

a1

s�������������
1ÿ s2
p :

The solution is received for P0�r� � P0 � const:
The coe�cient of intensity of magnetoelastic stress ts22�x1, x2�=m in this case takes the form:

k1 � lim
x 14�1

���������������������
2l�x1 ÿ 1�

p ts22�x1, 0�
m

� ÿ l 1=2�Pÿ P0�
1ÿ �1ÿ n�mrb2

c

,

which coincides with (Shindo's, 1977) result (with accuracy 1=mr � 1, and P0 � 0), obtained by another
method.

Let us represent the function V2�s� in the form

V2�s� � u�s� o�s�, �28�
where u�s� is the new regular unknown function and o�s� � �1ÿ s�ÿa�1� s�ÿb: Using the results of
Erdogan et al. (1973) in the case of an inner crack �a 6�0� we can take a � b � 0:5: In the case of an edge
crack a � 0), for determination of a and b we obtain�

a � 0:5
cos pbÿ 0:5ak5b

2 � ÿak4 ÿ ak3 ÿ 0:5ak5
�
b� ak2 � ak4 � 0

�29�

We can see from the numerical calculations, that the solution b of transcendental equation in the case
(A) is less than 0.5 when b2

c < b2
c0 (for example, when n � 0:3, mr � 104, b2

c0 � 0:0000233). The solution
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of the Eq. (29) with the account of the condition 0 < Re a, Re b < 1 in the case (A) is given in Table 1.
Notice that the Eq. (29) has no solution satisfying the condition 0 < Re b < 1 in the cases (B), (C) and
(D). From the given table it follows, that in the case of inner crack �a 6�0� one may take a � b � 0:5 for
all considered boundary conditions (i.e. in the cases (A), (B), (C) and (D)). When a � 0, one may take
a � b � 0:5 in the cases (B), (C) and (D). In the case (A) a and b can be taken a � b � 0:5 too. (But in
di�erence to the other cases, here the condition b2

c < b2
c0 must be satis®ed.

For solving the Eq. (26), we seek u�s� in the form of interpolation polynomial (see Erdogan et al.,
1973; Panasuk et al., 1976)

u�s� � 2

M

XM
m�1

u�tm �
XMÿ1
r�0

Tr�tm �T�s� ÿ 1

M

XM
m�1

u�tm�, �30�

where Tn�x� is a Chebyshev polynomial of the ®rst kind. Using the quadrant formulae�1
ÿ1

�1ÿ t2 �ÿ0:5u�t� dt

tÿ xk
�
XM
m�1

p
M

u�tm�
tm ÿ xk

,

�1
ÿ1
�1ÿ t2 �ÿ0:5u�t� dt �

XM
m�1

p
M

u�tm �, �31�

from the integral Eq. (26) we obtain the system of Mÿ 1 linear algebraic equations for determination of
M unknown constants u�tm� �m � 1, 2, . . . ,M �

1

M

XM
m�1

u�tm�
�

ak1
tm ÿ xn

� L�tm, xn�
�
� p

ÿ
Pÿ P0�xn�

�
, �n � 1, 2, . . . ,Mÿ 1� �32�

wheretm�cos�2mÿ12M p�; xn � cos�pnM �: For the inner crack �a 6�0� the condition (27) with the account of Eq.
(31) can be written in the form

XM
m�1

p
M

u�tm� � 0 �33�

For the edge crack �a � 0), in the cases (A) and (C) the numerical method is similar to the case of an
inner crack �a 6�0), i.e. for determination of u�tk� the Eqs. (32) and (33) have to be solved. The numerical
calculations prove, that the function V2�s� at the point s � ÿ1 (what corresponds to x1 � 0� has
singularity of less order than �1� s�ÿ0:5, which yields the following condition in cases (B) and (D) (see
Panasuk et al., 1976)

u� ÿ 1� � 0: �34�
From Eq. (30) the condition (34) can be written in the form

XM
m�1
� ÿ 1�mu�tm �tg

�
2mÿ 1

4M
p

�
� 0: �35�

Table 1

Solution of Eq. (29) in the case (A) for edge crack (a = 0), when mr � 104, n � 0:3

b 2
c � 105 0 1/3 2/3 1 4/3 5/3 2 7/3 8/3 3

b 0.385 0.403 0.419 0.435 0.452 0.467 0.482 0.498 0.512 0.527
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Thus, the Eq. (32) also has to be solved with the account of condition (35) for the edge crack in the
cases (B) and (D). Upon solution of the system of algebraic Eqs. (32) and (33) or Eqs. (32) and (35),
from formula (30) we obtain u�s� and for the coe�cient of intensity of magnetoelastic stresses, with the
account of (25), we have (when P0�r� � P0 � const)

k�a� �
��
l
p

lim
r4ÿ1�0

�����������
r� 1
p

ts22�r, 0� � 4
��
l
p
�P0 ÿ P�b1u� ÿ 1� � k1a1u� ÿ 1�

k�b� �
��
l
p

lim
r41�0

�����������
rÿ 1
p

ts22�r, 0� � 4
��
l
p
�P0 ÿ P�b1u�1� � k1a1u�1� �36�

where b1�0:5fÿ1� �1ÿ 2n�e1� wb 2
c

m 2
r
�4mr�nÿ 1� � 3ÿ 4n�g: From Eq. (30) we have

u�1� � ÿ 1

M

XM
m�1
� ÿ 1�m�1u�tm �ctg

�
2mÿ 1

4M
p

�

u� ÿ 1� � 1

M

XM
m�1
� ÿ 1�m�Mu�tm�tg

�
2mÿ 1

4M
p

�
�37�

Note that the formula (35) is obtained with the account of the following relations:

1

p

�1
ÿ1

Tk�s��������������
1ÿ s2
p ds

sÿ t
�

8>>>>>><>>>>>>:

Ukÿ1�t� when jtj < 1

1�������������
t2 ÿ 1
p

ÿ
t�

�������������
t2 ÿ 1
p �k

when t < ÿ1

ÿ 1�������������
t2 ÿ 1
p

ÿ
tÿ

�������������
t2 ÿ 1
p �k

when t > 1

: �38�

From Eq. (26) it follows that a fredholm integral equation is obtained when b2
c � b2

ccr �b2
ccr is a solution

Fig. 2. Magnetoelastic stress intensity factors at crack tip a subjected in a magnetic ®eld, for cases (A), (B), (C), and (D) when

mr � 104, n � 0:3, d = 1.05.
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of equation a1 � 0). In that case V2�t� has no singularities at t �21: The intensity coe�cient of
magnetoelastic stresses at b2

c � b2
ccr is equal to zero. When d41 (in®nite plane with crack) it is clear

(see Shindo, 1977), that the coe�cient of magnetoelastic stresses tends to in®nity when b2
c4b2

ccr �
2m2

r

�
2w2�2w�1ÿ n� ÿ 1� 2n�: However, the account of the boundary of the body yields the following

result: for b2
c4b2

ccr the intensity coe�cient tends to zero.

4. Numerical results

On the basis of the analysis and the numerical procedure presented in previous sections, a computer
program is developed and numerical results are obtained. For large values of M �M160� the

Fig. 4. Magnetoelastic stress intensity factors for an edge crack, subjected in a magnetic ®eld when mr � 104, n � 0:3:

Fig. 3. Magnetoelastic stress intensity factors at crack tip b subjected in a magnetic ®eld, for cases (A), (B), (C), and (D) when

mr � 104, n � 0:3, d = 1.05.
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determinant of Eqs. (32) and (33) or Eqs. (32) and (35) is of order O�10ÿ25�, and numerical calculation
is complicated, although good converging results are obtained starting from M140: In Figs. 2±4 and in
Table 2 the numerical values of k�a��a� � k�a�=k1 and k�b� � k�b�=k1 are given for cases (A), (B), (C)
and (D). Numerical results are given for the inner crack �a 6�0� and for the edge crack �a � 0). In all
calculations P0 � 0:001:

4.1. Numerical results for the inner crack �a 6�0)

From numerical calculations one can see, that in all the cases with the growth of d the �k�a� and �k�b�
tend to 1 (particularly when d41 the result of Shindo (1977) is obtained). In Table 2 the values of the
intensity coe�cients �k�a� and �k�b� are given depending upon d under di�erent surface conditions when
mr � 104, n � 0:3, b2

c � 0:00004: Numerical analysis has shown, that boundary conditions do not
in¯uence much (compared with the case of a plane with a crack) the stress±strain state and on the
coe�cient of intensity of magnetoelastic stresses when d > 5: In Figs. 2 and 3 the graph of intensity
coe�cient of magnetic stress depending upon magnetic ®eld for inner crack is given.

The value b2
c increases up to 4:67� 10ÿ5 and mr � 104, n � 0:3, d = 1.05. From numerical

calculations one can see:

. In cases (A) and (C) the value �k�a� decreases with the increase of b2
c ;

. In cases (B) and (D) the �k�a� increases with the increase of b2
c ;

. With the increase of b2
c the value �k�b� is increasing in all cases;

. When b2
c4b2

ccr �b2
ccr is solution of a1 � 0� the values �k�a� and �k�b�40;

. When mr < 5000 the values �k�a� and �k�b� change slightly depending upon magnetic ®eld (about 3%).
Great changes take place when mr > 8000 for rather weak magnetic ®eld (01 T);

. Divergence is rather strong between intensity coe�cient in case (B) and (D) on the right side of the
crack (when x1 � b);

. For the coe�cients of intensity the following comparison relations are obtained: �k
C�a� < �k

A�a� <
�k
D�a� < �k

B�a� and �k
A�b� < �k

C�b� < �k
D�b� < �k

B�b� (where �k
A; B; C; D

are the coe�cients of intensity in
the case (A), (B), (C) and (D), respectively).

4.2. Numerical results in the case of edge crack �a � 0)

In Fig. 4 the graph of intensity coe�cient of magnetoelastic stresses �k�b� depending upon magnetic

Table 2

Depending magnetoelastic stress intensity factors for a crack in the case (A), (B), and (C) and (D) depending upon d, when

mr � 104, n � 0:3, b 2
c � 0:00004

d 1.005 1.5 2.0 2.5 3.0 3.5 4.0

kA(b) 0.795 0.835 0.869 0.894 0.911 0.923 0.932

kA(a) 0.083 0.601 0.744 0.813 0.851 0.875 0.891

kB(b) 1.389 1.082 1.039 1.019 1.007 0.999 0.994

kB(a) 2.315 1.179 1.069 1.023 0.999 0.985 0.976

kC(b) 0.830 0.838 0.870 0.894 0.911 0.923 0.933

kC(a) 0.057 0.603 0.746 0.814 0.853 0.876 0.892

kD(b) 1.191 1.022 0.999 0.989 0.984 0.981 0.979

kD(a) 2.263 1.051 0.991 0.971 0.962 0.957 0.969
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®eld b2
c is presented. The following parameters are chosen for calculations: mr � 104, n � 0:3 and b2

c

varies from 0 up to 4:67� 10ÿ5: The numerical calculations show, that here also the same pattern is
®xed, as in the case of the inner crack. Divergence between intensity coe�cients in cases (B) and (D)
increases with the increase of the magnetic ®eld. From the analysis one can conclude, that intensity
coe�cient has the same value in the cases (A) and (C). In the case (A) (when b2

c � 0� from numerical
results one can get �k�b� � 0:618 (see Fig. 4). That result coincides with the similar result obtained by
Savruk (1988). In the case (B) �k�b� � 1:1215, which has been obtained by Koiter (1965), Panasuk et al.
(1976) and Savruk (1988).

5. Conclusions

Thus the problem of determination of the stress±strain state for a magnetoelastic half-plane with a
crack is solved. It is supposed that four di�erent boundary conditions are given on the boundary of the
half-plane. It is shown, that for determination of the stress±strain state a singular integral equation must
be obtained. A numerical algorithm is developed for solving the integral equation. It has been shown
that the boundary conditions essentially in¯uence the coe�cients of intensity and magnetoelastic stresses
when d < 5: It is shown that, the coe�cient of intensity increases with the increase of the magnetic ®eld.
Starting from a certain value of a magnetic ®eld it decreases tending to 0 (whereas in the case of in®nite
plane the coe�cient of intensity increases up to in®nity).

In the case of the edge crack (a = 0) an integral equation can be obtained with a di�erence kernel on
semi-in®nite segment. This problem can be handled analytically by Wiener±Hopf's method. As a result,
the coe�cients of intensity and magnetoelastic stresses might be obtained analytically. However, this
problem is out of the scope of this paper.
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