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Abstract

The stress state of a magnetoelastic half-plane with a crack is considered. It is assumed that the half-plane is
located in a magnetic field, which is parallel to the boundary of the half-plane. Four various boundary conditions
for the half-plane are considered. A numerical method is developed to determine the crack-opening displacements
and the magnetoelastic stress intensity factor. The effect of the magnetic field and the boundary conditions on the
magnetoelastic stress intensity factor are shown graphically and numerically. The case of an edge crack is considered
as a particular case. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

During last few years a great number of papers are devoted to the behavior of the deformable bodies
in electromagnetic fields (Moon, 1968; Parton and Kudriavcev, 1988). Particularly the investigation of
the stress state of magnetoelastic bodies with different types of defects (cracks, etc.) in magnetic fields
becomes of great value (Parton and Kudriavcev, 1988; Shindo, 1977). Shindo (1977, 1982, 1983) was the
first to consider the problems of determination of the stress—strain state of a ferromagnetic body with
cracks in a magnetic field. He has proved, that quite weak magnetic fields (~1 T) can essentially change
the stress—strain state of the body in the vicinity of the crack. Later on the influence of various factors
(heterogeneity, nonstationarity of the process, account of the bound areas of the body etc.) on stress—
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strain state of a magnetoelastic body with a crack, has been considered (Hasanian et al., 1988; Hasanian
and Bagdasaryan, 1997; Shindo, 1982, 1983). All mentioned problems are solved on the basis of
linearized theory of magnetoelasticity of ferromagnetic bodies suggested by Pao and Yeh (1973).

In the present work the influence of boundary conditions on the stress—strain state of a half-plane
with a crack is investigated. A case is considered when the crack is perpendicular to the boundary of the
half-plane. The body is located in a homogeneous magnetic field, which is parallel to the boundary of
the half-plane (Fig. 1). A singular integral equation is obtained with respect to the unknown function
characterizing the problem. The problem is solved for the following boundary conditions:

e The boundary of the half-plane is fastened;
e The boundary of the half-plane is free of stresses;
e Mixed boundary conditions for the half-plane are given.

There are many papers devoted to similar questions in absence of the magnetic field (pure elastic case).
Particularly, Koiter (1965), Nied (1987) and Panasuk et al. (1976) have considered the stress—strain state
of the half-plane with a crack in the case when the boundary of the half-plane is free of stresses. There
are many results obtained for the problem of a half-plane with a fastened boundary (Bereznicki et al.,
1983; Savruk, 1988).

2. Formulation of the problem

Let the isotropic, homogeneous, linear elastic, magnetosoft ferromagnetic half-plane with a crack of
width /= b — a be located in a magnetic field B = (0, By), where By = const. The cartesian coordinate
system is chosen in such a way that the cross-section of the crack is in the plane X;0X, and includes the
segment (a, b) of the co-ordinate axis OX| (2. ={a < x| < b; x, =0}). The boundary of the half-plane
coincides with the axis OX; (see Fig. 1). The domain Q; ={—0c0 < x| < 0; |x2| < o0}, that is denoted by
() in Fig. 1, is taken to be vacuum. Let Q, = {0 < x; < 00;|x2| < o0} and Q= Q,/Q, be the
ferromagnetic body. The linearized equations and boundary conditions of magnetoelasticity for the
considered problem according to the theory of Pao and Yeh (1973) are given in the following form: In
the domain Q

1 2yb? .
AU,-+1_—2‘/(U1,1+U2,2)J+ " pp=0 (i=12) 1

) 04 b j:l
. )

Fig. 1. Half-plane with a crack in a magnetic field.
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The boundary conditions on the line x, = 0 have the following form:

t12(x1,0) =0 where 0 < x| < 00, (5)
o(x1,0) 2262 | 7
2(x1 ): £ 2‘ —{-'{ bf(pz—Pg(xl) where a < x| < b, (6)
Ju 2ur o O
@) __Z
o)y — @ _—#—Uz,l where a < x| < b, (7
(pfg)—u,<p,2=0 where a < x| < b, 8)
@1 =0 where 0 < x| <a,and b < x; < 00, 9)
Uy 1 =0 where 0 <x; <a,and b < x| < o0. (10)

The relation (6) holds under the condition that the crack surface is subjected also to equal and
symmetric mechanical loading, specified by p- Py(x;). In Eqs (H)—(10) the following notations are
accepted: b = Bo/uo,u, u, v are the elastic constants; A = a"; + "za,f, = a\ ; Ullx1, x2) (i=1,2) are
the chsplacements of the media; h, h® and h'" are perturbed magnetlc fields in domains Q, Q., and
respectively; ¢ is the magnetic potential; p, is the universal magnetic constant; y =y, —1 is the
magnetic susceptibility.

Consider the following four boundary conditions on the line x; = 0 for |x;| < o0

(A) U1(0, x2) = 0, Uz(0,x2) = 0; 0, — 0%} = 0; 0, — 9} = 0 (11a)
(B) 111(0, x2) = 0; 1120, x2) = 0; 9, — 0 = 0; 0, — ¢} — 7 U1 2 =0 (11b)
(C) Ux(0, x2) = 0; 111(0, x2) = 0; ¢, — <P(21) =0; g0 — <Pf11) — U, 2=0 (I1c)
(D) U1(0, x2) = 0; 112(0, x2) = 0; ¢ — % = 0; 0, — 9}’ =0 (11d)

In Egs. (5)—(11d) the following relations are used (Pao and Yeh, 1973)
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Besides the conditions (5)—(11d), the conditions at the infinity has to be taken into account, according to
which all the unknown functions conditioned by the deformation of the media, tend to zero, for xl2 +
x3#—o00. Note that, the given equations and boundary conditions are written for the plane deformation
state. By similarity, one can write down the equations and the boundary conditions for the plane stress
state.

The formulation of the problem in this form is symmetric with respect to the axis OX;. Using the
Fourier integral transformation and the symmetry of the problem it can be shown that the solutions,

satisfying Egs. (1)—(4), have the following form: in the internal domain ((x1, x7) € Q)

2 [ 2 (* B
Ui(x1, x2) = EJ [E(ﬁ) + xlF(ﬁ)]efﬂx'cos Px,dp + EJ |:A(oc) + (oxy — 3+ 4v)% +Q
0 0
2, 2
—2v) 1be Cl(oc):|e_°‘xzsin oxy do
1y
2 (*° 2 [ Fl
Us(x1, x2) = EJ [A(oc) + sz(oc)]e_“x‘cos oxy do + EJ |:E(ﬁ) +(px; -3+ 4v)% -
0 0
2yb? pras
—2v)2C Cy(B) [e F¥2sin Bx dB
I
2> —ox 2 (> —px
O(x1, X2) = - Ci(a)e ™**2cos ox, do + - Cy(p)e 2 dp (13)
0 0
in the external domain, i.e. (x, x2) € Q)
1) 2™ B g;
@ (x1,x2)= - G(B)e™ 'sin fxo df (14)
0
in the domain (x, x;) € Q,
2 [ .
(p(")(xl, X2) = EJ Ae(or)sin ax, cos ox g do. (15)
0

In Egs. (13)—(15) A(x), B(z), Ci(), Cx(), E(B), F(B), G(f) and A.(o) are unknown functions, which are
determined from the boundary conditions (5)—(11d).
Let us define two functions in the following way:
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M when x| € (a, b)

Va(x1) = x| (16)
0 when x| € (0, a)U (b, 00)
M when x| € (a, b)

Vi(x1) = 0x (17)
0 when x| € (0, a)U (b, o0)

According to the boundary conditions (5), (7), (9) and (10), the following relations are obtained:

b b

Va(t)sin ar dr;  aCy(x) = J Vitsinat de; Vi(1) = L V(1) (18)

a r

oaA(o) = J

a

b )y 2h2
B(x) = elj Vo(t)sin ot dt; e = ﬁ |:2 + (31#} (19)

a r

From the boundary condition (8) the function A4.(x) can be determined via function V,(¢). However, we
will not need it hereafter. Now we have to determine the unknown functions E(f); F(f); C2( ) and G(f)
through the function V(). Substituting Egs. (18) and (19) into Eq. (12) and using the boundary
conditions (11a)—(11d), upon some transformations for the unknown functions we get the following
relations:

b b b b
BE) = an Va(t)e ™ dt+HfﬁJ Vo) dr; BCAB) znfj Vy(t)e dz+9,§/3J V()P dr;
b b
F(B) = nfj Va(t)e Pt dr + O{ﬁj V()P ar (20)
where

nE = | g — Tix GiMiy — Gemy | Tipy GiMip,  Gi _1,
* (i + 1) Nig (e +1) N pe 1 Ne(p+1) N |

-1

E_ Gyny Typy GiMyp, G F

0 tk — 1— - — i
Ny u,+1 Nk(,u,.+ 1) Ny

1 My; ET My
_ e M +’7k[ﬂ_1}
Ni (i 4+ 1) NicLp +1

or = M O Mipi
FZ N N u+1

E E
C PNy V4 C pkek
- — _ + ; 0 = - k:A,B,C,D. 21
T T 1) T Tt ( ) @
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In the case (A) k = 4 and
pA:O;NA:—3+4V;MA:—y1;mA:I;HA:—EI;GA:TA :gA:lAZO.

In the case (B) kK = B and

2vyb? 2h? 4v — 1)yb?
pp=—1 Np=—142v; Mp= 22y = £ ‘;nB=—e1;GB=—2+2v;TB=7(V )’C‘;
1y 2u; 2u,
gp=1tp=0.
In the case (C) k = C and
2"b2 2b2
pc=xNe=—1+2v; Mc= V’(”;mCzé—;;ncz—el;Gcz—3+4v;Tcz—yl;gczl;
r 1;
tc = —ey.
In the case (D) k = D and
1 —4v)yb?
pDZO;ND=—2+2V;MD=—w;nipanIGDZT[):gDZZ‘DZO.

2u,

Finally all the unknown functions are expressed through one unknown function V,(¢). Thus, owing to
Egs. (18) and (19), the boundary conditions (5) and (7)-(11d) are satisfied. From the boundary
condition (6), one can determine the unknown function V(). Substituting Egs. (18) and (19) into Eq.
(6), the following equation is obtained

1 b
E'J Vo(t) - RO(x1, t)dt = P — Py(x1), a<xi<bh, (22)

a

where

1 1 X t t-x
Ro(xl,t)zal +a12‘ +a13‘ ! 5 +alj 5 +a15‘ ! 3
r—Xx 4+ x (l+X1) (l+x1) (Z+X1)

a124[—1+(1—2v)e1+ﬂiv?}a’§=4[a1+nf+nfo(—3+2v)+mf~“/3],

¥

d = dnf. df = 4[0F + 0E Qv —3) 4+ 0F 93], ok =80f. (k= 4, B.C. D)

o 10he  Qr=ibe o o 10 p 2= 2)be
P2y, e T 2u?
Taking into account Eq. (16) and the boundary condition (10), one can obtain

b
J Vz(l) dr = Uz(O, b) - UQ(O, a). (23)

a
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From the symmetry of the problem with respect to OX; it follows, that U,(b,0) = 0. When a#0,
satisfied also Uj(a, 0) = 0, and from Eq. (23) we have

b
J Vz(l) dt = U2(0, b) — Uz(o, a) =0. (24)
Thus for the determination of V,(¢) (in the case a#0) the singular integral Eq. (22) is obtained together
with the boundary condition (24). In the same way, one can consider the case when the inner crack
reaches the boundary of the half-plane (case of the edge crack, i.e. when a = 0). In this case also all
formulae (1)—(22) are valid and the kernel R%(x, 7), besides the ordinary singularities when x; = 7, has a
point singularity, when x| = ¢ = 0. Note that in cases (A) and (C) from boundary conditions (11a) and
(11c) it follows, that U,(0, 0) = 0, and the condition (24) is obtained for the function V,(¢). In the cases
(B) and (D) the condition (24) does not hold. However, the following condition must be satisfied
U,(0, 0)#0 (see Panasuk et al., 1976).
Taking into account Egs. (18) and (19) one can obtain from Eq. (12)

Rij(x1, x2, ))Va(1) dt
’ (25)

1 It 1 2u?

(.j=12)

1i(x1, X2) _ Li(x1, X2) N 1) (x1, x2) _ (4u, — 3)b3547+ %Jb

where for example

1 ) t t— 2t 2
Rzz(xl,)(,‘z, l):zl:—1+(1—2v)€1+—’))1//i||: +le 2+ le 2]_% %
My (t+x1)"+x5  (I—x1)"+x; [(£4x1)2+x2]

I+ x et +x1)2—x3]

2(t — x1)x3

+ [nf +nf Qv =3) +yin( ] '
} PG [ 2]

tl(t+x1)*=x3] 2+ x)[(f+x1)*=3x3]
[(z+x1)2+x22]2 g [(t+x1)2+x22]3

[(f—xl)2erzz]2

+ [0F + 0 v — 3) + 90 |

202v— Dyb? 2, — 1 22, — 1
"= - b2,y =91 + 22 —1) )bf-

1y 1y 1y

In particular cases, from Eq. (22) one can obtain well-known results. For example, in case (B) when
b2 = 0 (pure elastic case), the integral Eq. (22) takes the form

b 2
1 1 2t 4¢
J + + - < | Vat) di = mPy(x 1),
al T—X1 4+ xq (t+x1) (Z+X1)

which coincides with the integral equations, obtained by Panasuk et al. (1976) and Nied (1987). In the
case (A) when b? = 0, the integral equation takes the form of that, obtained by Bereznicki et al. (1983).

3. Construction of the solution to the integral equation

First, the case of an inner crack is considered (i.e. a#0). Let us write the integral Eq. (22) in the from
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o a1
J Vz(s)|:— + L(r, s):| ds =n(P — Py(r)), |r] <1 (26)
-1 S—r

where the following notations are introduced

b—a b—a b+a —
Xp=— (r+d),t= 3 (s+d)’d=b—a’ Va(s) = Va(), L(r, s)
s ag"(r +d) di(s + d) alg(r +d)(s+d)

TsFr42d ] art2d)” Gtr42d) G4r+2d)

The condition (24) is written in the form

1
J Va(t)dt =0 27)
-1

In the cases of a#0 the integral Eq. (26) must be considered together with the condition (27).

In the case of an edge crack (i.e. a =0 or d = 1), for determination of the unknown function ¥>(s),
also the integral Eq. (26) is obtained. When a =0, in the case (A) and (C) the integral Eq. (26) is
considered together with the condition (27).

Note that on the basis of Eqgs. (26) and (27), the solution of the problem for an infinite plane with a
crack can be obtained (see Shindo, 1977). In fact, consideringd— oo one gets from Eq. (26)

lr‘z“hth‘P“”
Ty s—r a

, ] < 1.

The solution of this equation tending to oo whenr— +1 takes the form
P— P() N
V=52

The solution is received for Py(r) = Py = const.
The coeflicient of intensity of magnetoelastic stress £5,(x1, x2)/u in this case takes the form:

. s, 0) (P —Py)
= im VRl = D = T o b

Va(s) =

which coincides with (Shindo’s, 1977) result (with accuracy 1/u, < 1, and Py = 0), obtained by another
method.
Let us represent the function V5(s) in the form

Va(s) = u(s) o(s), (28)

where u(s) is the new regular unknown function and w(s) = (1 —s) *(1 +s) #. Using the results of
Erdogan et al. (1973) in the case of an inner crack (a#0) we can take o = f = 0.5. In the case of an edge
crack a = 0), for determination of « and f§ we obtain

(29)

o=0.5
{cos nf — 0.50’5‘,82 + (af{ —dk — O.Sag‘)ﬁ +di+d=0

We can see from the numerical calculations, that the solution f of transcendental equation in the case
(A) is less than 0.5 when b? < b2 (for example, when v = 0.3, u, = 10%, b2 = 0.0000233). The solution
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Table 1

Solution of Eq. (29) in the case (A) for edge crack (¢ = 0), when y, = 10*, v =0.3

b2 x 10° 0 1/3 2/3 1 4/3 5/3 2 7/3 8/3 3

p 0.385 0.403 0.419 0.435 0.452 0.467 0.482 0.498 0.512 0.527

of the Eq. (29) with the account of the condition 0 < Re «, Re f§ < 1 in the case (A) is given in Table 1.
Notice that the Eq. (29) has no solution satisfying the condition 0 < Re f < 1 in the cases (B), (C) and
(D). From the given table it follows, that in the case of inner crack (a£0) one may take o = = 0.5 for
all considered boundary conditions (i.e. in the cases (A), (B), (C) and (D)). When a = 0, one may take
o = f = 0.5 in the cases (B), (C) and (D). In the case (A) o and f can be taken o = § = 0.5 too. (But in
difference to the other cases, here the condition b> < b2, must be satisfied.

For solving the Eq. (26), we seek u(s) in the form of interpolation polynomial (see Erdogan et al.,
1973; Panasuk et al., 1976)

M M-1 | M
us) =+ > ultm) Y Totm)T(s) — 7 > u(tm), (30)
m=1 r=0 m=1
where 7),(x) is a Chebyshev polynomial of the first kind. Using the quadrant formulae
L -2)""uw) dr T u(tm) ! 0.5 Mo
e (1= "y dt =Y —u(ty), 31
[ mz il 0 dr= 3 Fut) (1)

from the integral Eq. (26) we obtain the system of M — 1 linear algebraic equations for determination of
M unknown constants u(t,,) (m=1, 2,...,.M)

M
Zu(tm)[

wheret,, =cos(25-1n); x, = cos(%). For the inner crack (a#£0) the condition (27) with the account of Eq.
(31) can be written in the form

—I— L(ty, x ,,)i| = n(P Pg(x,,)) mn=12,....M-1) (32)

M

Z%u(t’”) =0 (33)

m=1

For the edge crack (¢ = 0), in the cases (A) and (C) the numerical method is similar to the case of an
inner crack (a#0), i.e. for determination of u(#;) the Egs. (32) and (33) have to be solved. The numerical
calculations prove, that the function 7,(s) at the point s = —1 (what corresponds to x; = 0) has
singularity of less order than (1 4 s) %>, which yields the following condition in cases (B) and (D) (see
Panasuk et al., 1976)

u(—1) =0. (34)

From Eq. (30) the condition (34) can be written in the form

u 2m—1
> (= l)mu(tm)tg( 17 n) =0. (35)

m=1
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Fig. 2. Magnetoelastic stress intensity factors at crack tip a subjected in a magnetic field, for cases (A), (B), (C), and (D) when
e =10*v=0.3,d = 1.05.

Thus, the Eq. (32) also has to be solved with the account of condition (35) for the edge crack in the
cases (B) and (D). Upon solution of the system of algebraic Egs. (32) and (33) or Egs. (32) and (35),
from formula (30) we obtain u(s) and for the coefficient of intensity of magnetoelastic stresses, with the
account of (25), we have (when Py(r) = Py = const)

k(a)=~1 1i£111+0«/r + 18,(r, 0) = 4VI(Py — P)bu( — 1) = k®ayu( — 1)

k(b) =1 lirlnox/r —18,(r, 0) = 4VI(Py — P)byu(1) = k®aju(1) (36)
r— 1+
where b; =0.5{—1 + (1 — 2v)e; +7‘b; [4p, (v — 1)+ 3 —4v]}. From Eq. (30) we have

m

u(l) _ _if(_ l)erlu(t )Ct (2}’}’1— ln)
T M W Tamr

2m —1

1 U m

Note that the formula (35) is obtained with the account of the following relations:

Ui_1(t) when |t] < 1

1 k
1J1 Ti(s) ds F(ML\/#—I) when 1 < —1 G8)
)T —s2s—1 t_ll '

(1—viZ=1)" when ¢ > 1
2 -1

From Eq. (26) it follows that a fredholm integral equation is obtained when b2 = b2 (b2, is a solution

cer cer
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150 1T ——
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1,40 7
—T—Case A
130 T —O—Case B
120 + —hA—CaseC
—X—Case D
110 + S
1,00 7
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Fig. 3. Magnetoelastic stress intensity factors at crack tip » subjected in a magnetic field, for cases (A), (B), (C), and (D) when
w=10*v=03,d = 105

of equation a; =0). In that case V,(¢¥) has no singularities at = +1. The intensity coefficient of
magnetoelastic stresses at b2 = b2, is equal to zero. When d— oo (infinite plane with crack) it is clear

(see Shindo, 1977), that the coefficient of magnetoelastic stresses tends to infinity when b2—b2 =

2u? / 2y°[2%(1 —v) — 1 + 2v]. However, the account of the boundary of the body yields the following
result: for h2— b2, the intensity coefficient tends to zero.

4. Numerical results

On the basis of the analysis and the numerical procedure presented in previous sections, a computer
program is developed and numerical results are obtained. For large values of M (M=60) the

45
4

—{—Case A
—O—Case B
—hA—Case C
—X—Case D

3-10°h]

n
T T T T T T T T T T T T T 1

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 4. Magnetoelastic stress intensity factors for an edge crack, subjected in a magnetic field when u, = 10%, v = 0.3.
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Table 2
Depending magnetoelastic stress intensity factors for a crack in the case (A), (B), and (C) and (D) depending upon d, when
1 =104 v =10.3, b2 = 0.00004

d 1.005 1.5 2.0 2.5 3.0 3.5 4.0

kA (b) 0.795 0.835 0.869 0.894 0911 0.923 0.932
k™) 0.083 0.601 0.744 0.813 0.851 0.875 0.891
kB(b) 1.389 1.082 1.039 1.019 1.007 0.999 0.994
kB(a) 2315 1.179 1.069 1.023 0.999 0.985 0.976
kS(b) 0.830 0.838 0.870 0.894 0911 0.923 0.933
k@) 0.057 0.603 0.746 0.814 0.853 0.876 0.892
kP(b) 1.191 1.022 0.999 0.989 0.984 0.981 0.979
kP(a) 2.263 1.051 0.991 0.971 0.962 0.957 0.969

determinant of Eqgs. (32) and (33) or Egs. (32) and (35) is of order O(10~%), and numerical calculation
is complicated, although good converging results are obtained starting from M ~40. In Figs. 2—4 and in
Table 2 the numerical values of k(a)(a) = k(a)/k> and k(b) = k(b)/k> are given for cases (A), (B), (C)
and (D). Numerical results are given for the inner crack (a#0) and for the edge crack (¢ = 0). In all
calculations Py = 0.001.

4.1. Numerical results for the inner crack (a#0)

From numerical calculations one can see, that in all the cases with the growth of d the k(a) and k(b)
tend to 1 (particularly when d— oo the result of Shindo (1977) is obtained). In Table 2 the values of the
intensity coefficients k(a) and k(b) are given depending upon d under different surface conditions when
wo=10% v=0.3, bf = 0.00004. Numerical analysis has shown, that boundary conditions do not
influence much (compared with the case of a plane with a crack) the stress—strain state and on the
coefficient of intensity of magnetoelastic stresses when ¢ > 5. In Figs. 2 and 3 the graph of intensity
coefficient of magnetic stress depending upon magnetic field for inner crack is given.

The value b2 increases up to 4.67 x 107> and g, =10*, v=03, d = 1.05. From numerical
calculations one can see:

In cases (A) and (C) the value k(a) decreases with the increase of b2,

In cases (B) and (D) the k(a) increases with the increase of b

With the increase of bf the value k(b) is increasing in all cases;

When b2—b2, (b2, is solution of a; = 0) the values k(a) and k(h)—0;

When p, < 5000 the values k(@) and k(b) change slightly depending upon magnetic field (about 3%).

Great changes take place when u, > 8000 for rather weak magnetic field (~1 T);

e Divergence is rather strong between intensity coefficient in case (B) and (D) on the right side of the
crack (when x| = b); . »

) lfgr the _%oefﬁcients_Aof inte_%sity th_eD follow_i}s}g comparison Breéa%ons are obtained: k (a) <k (a) <

k (@) <k (a) and kK (b) <k (b) <k (b) <k (b) (Where Kk~~~ are the coefficients of intensity in

the case (A), (B), (C) and (D), respectively).

4.2. Numerical results in the case of edge crack (a =0)

In Fig. 4 the graph of intensity coefficient of magnetoelastic stresses k(b) depending upon magnetic
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field 52 is presented. The following parameters are chosen for calculations: p, = 10%, v =0.3 and b2
varies from 0 up to 4.67 x 1073, The numerical calculations show, that here also the same pattern is
fixed, as in the case of the inner crack. Divergence between intensity coefficients in cases (B) and (D)
increases with the increase of the magnetic field. From the analysis one can conclude, that intensity
coefficient has the same value in the cases (A) and (C). In the case (A) (when b? = 0) from numerical
results one can get k(b) = 0.618 (see Fig. 4). That result coincides with the similar result obtained by
Savruk (1988). In the case (B) k(b) = 1.1215, which has been obtained by Koiter (1965), Panasuk et al.
(1976) and Savruk (1988).

5. Conclusions

Thus the problem of determination of the stress—strain state for a magnetoelastic half-plane with a
crack is solved. It is supposed that four different boundary conditions are given on the boundary of the
half-plane. It is shown, that for determination of the stress—strain state a singular integral equation must
be obtained. A numerical algorithm is developed for solving the integral equation. It has been shown
that the boundary conditions essentially influence the coefficients of intensity and magnetoelastic stresses
when d < 5. It is shown that, the coefficient of intensity increases with the increase of the magnetic field.
Starting from a certain value of a magnetic field it decreases tending to 0 (whereas in the case of infinite
plane the coefficient of intensity increases up to infinity).

In the case of the edge crack (¢ = 0) an integral equation can be obtained with a difference kernel on
semi-infinite segment. This problem can be handled analytically by Wiener—Hopf’s method. As a result,
the coefficients of intensity and magnetoelastic stresses might be obtained analytically. However, this
problem is out of the scope of this paper.
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